Multifractal detrended fluctuation analysis: Practical applications to financial time series

نویسندگان

  • James R. Thompson
  • James R. Wilson
چکیده

To analyze financial time series exhibiting volatility clustering or other highly irregular behavior, we exploit multifractal detrended fluctuation analysis (MF-DFA). We summarize the use of local Hölder exponents, generalized Hurst exponents, and the multifractal spectrum in characterizing the way that the sample paths of a multifractal stochastic process exhibit lightor heavy-tailed fluctuations as well as shortor long-range dependence on different time scales. We detail the development of a robust, computationally efficient software tool for estimating the multifractal spectrum from a time series using MF-DFA, with special emphasis on selecting the algorithm’s parameters. The software is tested on simulated sample paths of Brownian motion, fractional Brownian motion, and the binomial multiplicative process to verify the accuracy of the resulting multifractal spectrum estimates. We also perform an in-depth analysis of General Electric’s stock price using conventional time series models, and we contrast the results with those obtained using MF-DFA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations.

The detrended cross-correlation coefficient ρ(DCCA) has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation a...

متن کامل

The components of empirical multifractality in financial returns

We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with ...

متن کامل

Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China

Multifractal detrended fluctuation analysis (MFDFA) can provide information about inner regularity, randomness and long-range correlation of time series, promoting the knowledge of their evolution regularity. The MFDFA are applied to detect long-range correlations and multifractal behavior of streamflow series at four hydrological stations (Toudaoguai, Longmen, Huangfu and Ganguyi) in the main ...

متن کامل

Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multifractal Detrended Fluctuation Analysis (MFDFA) method has been implem...

متن کامل

Fractal and Multifractal Time Series

5 Methods for Non-Stationary Fractal Time-Series Analysis 15 5.1 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Discrete Wavelet Transform (WT) Approach . . . . . . . . . . 16 5.3 Detrended Fluctuation Analysis (DFA) . . . . . . . . . . . . . 16 5.4 Detection of Trends and Crossovers with DFA . . . . . . . . . 19 5.5 Sign and Magnitude (Volatility) DFA . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2016